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Abstract 

A superstructure may be looked upon as a commen- 
surate modulated structure and be described through 
the superspace formalism. It can be studied using 
low- or high-symmetry superspace groups. The 
possibility of adopting a high-symmetry description 
is related to the existence of at least two independent 
three-dimensional sections in the supercrystal with 
the same space-group symmetry. The usual structure- 
factor formula for commensurate structures 
[Yamamoto (1982). Acta Cryst. A38, 87-92] includes 
just one of these sections, thus allowing for a low- 
symmetry description only. A very simple generali- 
zation of this in the superspace formalism is pre- 
sented, which allows for the use of either low- or 
high-symmetry superspace groups in the structural 
analysis. The reasons for a seemingly successful 
refinement found in the literature, making use of the 
high-symmetry description, are discussed. 
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1. Introduction 

The superspace formalism (de Wolff, 1974; Janner & 
Janssen, 1977, 1980) has been shown to be a power- 
ful tool for the description of modulated incemmen- 
surate phases. This formalism includes the definition 
of a supercrystal in a (3 + d)-dimensional space, 
where d is the number of independent modulation 
wave vectors. The multidimensional construction 
includes (3 + d)-dimensional atomic positions and 
(3 + d) x (3 + d) thermal tensors (Yamamoto, 
1982a). The structure-factor formula and the symme- 
try operators are referred to this multidimensional 
space. The symmetry groups of this space are often 
called superspace groups (SSGs). 

The superspace formalism has also been employed 
in the structural analysis of commensurate phases by 
Yamamoto & Nakazawa (1982), Yamamoto (1983), 
Hogervorst & Helmholdt (1988) and Sciau & 
Grebille (1989), among others. Their principle 
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motivation was that the superspace group may have 
more symmetry than that contained in the three- 
dimensional (3D) space group of the superstructure, 
with the consequent lowering of the number of struc- 
tural parameters needed for the description, although 
this statement was shown not to be strictly valid 
(Perez-Mato, Madariaga, Zufiiga & Garcia-Arribas, 
1987). 

The choice of a superspace group for the descrip- 
tion of a commensurate modulated structure is, in 
general, not unique (Perez-Mato et al., 1987). For 
example, for a crystal that undergoes the normal-  
incommensurate-commensurate phase sequence as 
the temperature is lowered, the choice of the 3D part 
of the SSG for the latter phase can be either the 
actual 3D space group of the superstructure (low- 
symmetry SSG), or the space group of the normal 
phase (high-symmetry SSG), if the former is a sub- 
group of the latter. 

The advantage of choosing a high-symmetry SSG 
for the structural analysis of a commensurate phase 
has been extensively discussed (Perez-Mato et al., 
1987; van Smaalen, 1988; Perez-Mato, 1991). How- 
ever, the usual structure-factor formula for commen- 
surate modulated structures (Yamamoto, 1982a) 
does not allow for structural analysis using a high- 
symmetry description. A proof  of this is given by the 
fact that the latter yields different values of the 
structure factors when calculated using two alterna- 
tive but otherwise equivalent indexings for the same 
reflection (as is shown in the example of § 4). 

The aim of this paper is to give a generalized 
expression for the structure-factor formula for a 
commensurate structure in the superspace formalism, 
which will be valid irrespective of the description 
adopted. In § 2, the superspace formalism is briefly 
described and some general features in a high- 
symmetry description are analyzed. In §3, a 
structure-factor formula consistent with this descrip- 
tion is found. Finally, in § 4, we analyze an example 
in the literature of a structural analysis of a commen- 
surate phase making use of a high-symmetry descrip- 
tion and we show that the particular conditions 
occurring explain the unexpected success of the 
refinement. 

2. S u p e r s p a c e  formal i sm 

In the superspace formalism, a d-dimensionally 
modulated structure is described through the defi- 
nition of a (3 + d)-dimensional space. In order to 
simplify the formulation, we consider in detail the 
case of a commensurate displacive structure with a 
one-dimensional modulation. 

A modulated structure is, in general, the result of a 
distortion of a basic structure. For a displacive 

modulation, the positions of the atoms in the unit 
cell of the supercrystal are given by the four coordi- 
nates 

x ~ = (r~',x,~) = (r~ + u ' , ~  + u~), (1) 

where r~ is the position of the atom labeled v in the 
basic unit cell and u defines the distortion between 
the basic stucture and the modulated one, expressed 
in terms of Fourier series as 

u~(2g) = Y.[a,~ cos (2rrn2~) + b~, sin (2rrn2g)] (2) 
n 

~,~ = qr~ + t, u~ = qu~(~g), (3) 

where q is the modulation wave vector and t is the 
initial phase affecting the modulation wave, which 
defines the 3D section of the supercrystal at which 
the atom u lies. 

For an incommensurate q, the different sections t 
of the supercrystal are all equivalent and no restric- 
tions are imposed on t. If q is commensurate with the 
basic cell, t takes only a discrete set of values, which 
are related to the 3D space group of the super- 
structure. 

A full treatment of the symmetry of one- 
dimensionally modulated structures has been given 
by de Wolff, Janssen & Janner (1981). A symmetry 
element of the SSG can be written as (ReRzlvez4); 
(Relve) is a 3D operator that acts on the 3D real 
space and (Rzlz4) (R~ - - 1) acts on the fourth coor- 
dinate. In what follows, we consider Rz to be refined 
as R1q = Req, irrespective of the character of q. This 
definition is equivalent, in direct space, to 

Rlqr = qREr (4) 

for any vector r in the 3D space. Two atoms v and/z  
in the supercrystal are then related by a superspace- 
group element if 

r~ = Rer~ + ve (5) 

xg = qr ~ + t' = Rzx~ + 7"4 (6) 

u,'(x~) = R~u~(~). (7) 

For a commensurate modulation with a wave 
vector of the form 

q = (1/M)Zmia* (8) 
i 

(M and mi being integers and a* basic unit 
reciprocal-lattice vectors), a superspace group corre- 
sponds to an infinite collection of different 3D struc- 
tures, which are obtained by varying the initial phase 
t of the modulation wave. The condition for the 
superspace operation (RER, IvET"4) to be a 3D sym- 
mtry operation (RE lye) is that the atoms /z and v 
belong to the same translationally equivalent section 
of the supercrystal, i.e. the condition t = t' must hold 
in (6). This brings us to the following relation 
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between t and z4: 

7"4 - -  qvE + (Rzt - t) = 0. (9) 

Equation (9) is the same as in Perez-Mato (1991), 
setting 7' = ~'4- qvE, z' being the translation of the 
phase t corresponding to the symmetry element 
(R IvE). 

The operators with RI = 1 have a ~'4 value indepen- 
dent of the choice of origin along the fourth dimen- 
sion; they will or will not be elements of the 3D space 
group independently of the chosen section t. 

For the operators with RI = - 1 ,  the value of ~'4 
can be chosen arbitrarily; for a given value of r4 the 
symmetry operation will be a space-group element 
only for the particular sections t fulfilling condition 
(9). It is easy to see that if to is a section with the 
desired symmetry, the nontranslationally equivalent 
section t' = to + (1/2M) has the same symmetry. The 
set of symmetry operators that leaves invariant these 
sections forms the low-symmetry SSG ({GL}). The 
possibility of choosing a high-symmetry SSG ({Gn}) 
~s related to the existence of these two invariant 
sections in the supercrystal when there are symmetry 
operators (R'[~")=(R'eR',[v'er'4) that satisfy the fol- 
lowing conditions: 

(i) their 3D part (R~lvk) relates atoms in the basic 
structure; 

(ii) (R'lz') transforms atoms from section to to 
section t ' =  to + (1/2M) (and vice versa) in order to 
keep the 3D symmetry of these sections. 

The last condition leads to 

~'~- qv~ + ( R ' i t o -  to) = 1 /2M.  (10) 

Equation (10) has to be fulfilled by the non-3D 
operators (R'lz') under the hypothesis that the low- 
symmetry SSG contains at least one element with RI 
= - 1. When no such elements exist, all the sections 
of the supercrystal have the same symmetry and no 
extra conditions are imposed over ~-~. 

For example, with to = 0, (9) becomes 

z4 = qve (11) 

(Yamamoto & Nakazawa, 1982), as the one to be 
fulfilled by the operators belonging to {G,}, and, if 
the latter contains some element with RI = - 1, (10) 
becomes ~-~- qv~:= (1/2M) for the operators not 
belonging to {GL}. 

In this way, the real structure is built up from the 
independent (t = 0) atoms by the application of the 
symmetry operators belonging to {GL} and from the 
independent (t = 1/2M) atoms by the application of 
the symmetry operators (R'lz') belonging to {Gu}. In 
the usual structure-factor formula for a commen- 
surate structure (Yamamoto, 1982a), all the symme- 
try operators act on sections with t = 0 mod(1/M); 
then, the possibility of a high-symmetry SSG descrip- 
tion is not contemplated. As we see in the next 

section, the above features appear when an all- 
inclusive derivation of the structure-factor formula 
for a commensurate modulated structure is carried 
out. 

3. Structure factor 

In this section, an expression for the structure-factor 
formula that will allow for the structural analysis in 
a low- or a high-symmetry SSG is derived. 

The diffraction pattern of a modulated structure 
with a one-dimensional modulation is given by a set 
of discrete Bragg peaks with diffraction vectors of 
the form 

3 

H = h + h4q = ~ hia~ + h4q, (12) 
i = 1  

where hi are integers for i = 1,...,4). For the com- 
mensurate vector (8), g = Mq is a vector in the basic 
reciprocal lattice. Hence, in contrast with the incom- 
mensurate case, the indexing of (12) with four indices 
is not unique and unambiguous and we have a set of 
equivalent expressions 

H = h + h4q -- (h + ng) + (h4 - nM)q, (13) 

where n is an integer. The structure factor at each 
diffraction vector H for such a commensurate 
modulated structure is given by the general expres- 
sion (Perez-Mato, 1991) 

F(H) = Z F(h + ng,h4 - nM) exp [ -  2rti(h4 - nM)to], 
n 

(14) 

where to is the initial phase of the modulation wave 
and F~,h4) is the structure-factor formula for an 
incommensurate structure, defined as (Yamamoto, 
1982a) 

I 

F(h,h4) --- Z Z f d ~ p " f " ( I - I )  
v (R[~) 0 

× exp { -  ~u h~[RB~'(2g)Rr]uhJ 

+ 2zri Z (hi[Rx~(~g)]i + hiv , (15) 
i = 1  

where p" is the multiplicity of the vth nonequivalent 
atom in the basic cell, v~ = (vE)i for i = 1, 2, 3, v4 = z4 
and (R[~-) runs over only those symmetry operators 
that are representatives of the translationally equiva- 
lent classes of the SSG. 

With neglect, for simplicity, of the temperature 
factors and use of (3), (4) and (15), (14) leads to 

1 

F ( H ) =  E Z f dt p~ f~(H) 
v (Rl~) 0 

x exp {2~'i[HRE(r~ + u"(t)) 
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+ h 4 ( R , t -  to + ~'4) + hve]} 

× Z e x p [ - T r 2 i n M ( R z t -  to + ~'4 - qve)], 
n 

(16) 

which in turn can be written as 
1 

F(H) = f dt f( t )  ~'. exp [ -  2zrinM(Rzt - to + 'r4 - qVE)], 
0 n 

(17) 

where f ( t  + n) =f( t )  (n integer). Using the fact that 

~'. exp [ -  2zrinM(R1t - to + z4 - qvE)] 
?1 

= (l/M) Z 6[R, t  - to + ~'4 - qVE + (n/M)] (18) 
n 

and the periodicity of the function f ( t ) ,  we find 
1 

F ( H ) =  Z X f dtp~f~(I'I) 
v (RI~) 0 

x exp{27ri[HRE(r~ + u"(t)) 

+ ha(Rtt - to + T4) q" hVE]} 
M--1  

x (I/M) Z 6[R~t - to + ~'4 - qVE + (S/M)]. 
s-~ O 

(19) 

The delta function in (19) determines the (discrete) 
sections of the supercrystal from which an atom is 
brought, by each symmetry operator (RI~-), to the 
main 3D section. For the identity operator, the 
allowed values of t derived from (19) are t--  
to mod(1/M). This set must be common to all the 
superspace operators that are also 3D symmetry 
operators. Therefore, such elements must fulfil con- 
dition (9). 

The operators (R'I~"), which do not fulfil condi- 
tion (9), yield nonzero contributions to the structure 
factors only when they act on atoms placed on 
sections t' = R'i(to + q v ' e -  ~"4) mod(1/M). With the 
fact that these sections should have the same symme- 
try as those with t = to taken into account, condition 
(10) is recovered when {GL} contains some operator 
with R t = -  1. The result of the reduction of the 
independent atoms in the structure when a high- 
symmetry SSG is adopted is then compensated for 
by an increase in the number of values of 2~ in (3) at 
which the modulation function (2) must be evalu- 
ated, a fact already noted by Perez-Mato et al. 
(1987). 

In a return to the superspace formalism and after 
performance of the integral in (19), the structure- 
factor formula for a modulated commensurate struc- 
ture with one-dimensional modulation is written as 

F(H) = f(h,h4) 
M - - I  

= (l/M) Z Z Z p"f'(I-I) 
s = 0  u (Rr) 

x exp {-,.J~hi[RBV(~aa's(R))Rr]uhJ 

4 } 

+ 27ri Z h,[RxV(~aa.s(R))], + hivi (20) 
i = l  

with 

2 ~ ( R )  = qr~ + Rt[to - z4 + qvg + (s/M)]. (21) 

This expression differs from Yamamoto's in the set 
of values 2g for which each term is evaluated. In 
taking into account (21), we are including the possi- 
bility of transforming atoms from sections other than 
the t = to mod(1/m) one, this allows a high-symmetry 
description of the structure. If a low-symmetry SSG 
description is adopted, the structure-factor formula 
given by Yamamoto (1982a) is recovered. 

Although the case of a modulated commensurate 
structure with one-dimensional modulation was the 
one considered in detail here, the extension to more 
dimensions is straightforward. For a d-dimensional 
modulated structure with wave vectors qJ = 
(1 /Mj)~ . imj ia*  i ( M j  and mji integers for j =  1, ..., d), 
the structure-factor formula will depend on the d 
internal coordinates x3+j. These coordinates trans- 
form under the action of a (3 + d) x (3 + d) symme- 
try operator (RERI[VEVI) as 

d 

x~+j= Z (Rt)j~x[+~ + (vl):. (22) 
i = l  

Requiring that Y~+j = qJr~ + toj mod(1 /Mj)  (which 
ensures that the transformed atom belongs to the 3D 
real-space section of the supercrystal defined by toj, 
j = 1, ..., d), we obtain 

d 

Y~+j,~(R) = qJrg + Z (R~-l)j,[q~vz + to~ 
i = l  

- -  (V t ) i  + ( s i / M i ) ] ,  ( 2 3 )  

where se are integers, as the points at which the 
structure-factor formula ought to be evaluated in 
order to make the high-symmetry description of the 
commensurate modulated structure feasible. 

4. Example 

In the light of the above-proposed modifications to 
the structure-factor formula, it is worth dealing with 
the only example the author could trace in the 
literature of a structural analysis in a high-symmetry 
SSG, using the refinement program R E M O S  
(Yamamoto, 1982b), which was applied to the struc- 
ture of the low-temperature phase of KFeF4. The 
crystal structure of this phase had been previously 
solved in the Pmcn space group (Lapasset, Sciau, 
Moret & Gros, 1986) and was later described as a 
modulated structure with q = ½b* and SSG {G~,} = 
pAmma (Sciau & Grebille, 1989). ITs 
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The low-symmetry SSG for this structure is {GL} = 
--lrs°emc". The elements of this group are given in 
Table 1. 

The high-symmetry SSG can be expressed in terms 
of {Gr.} as 

{G/~} = {(E 1 0,0,0,0);(E ll0,½,½,0)} (~){GL}. (24) 

The space group symmetry of the different sections 
t of  the supercrystal can be obtained from (9). In 
Table 2, the space group of each section is given for 
two values of ~'4. Then, for ~'4 = ~, the t = 0 and t = 
sections have the desired symmetry. It is easy to see 
that the centering translation [and therefore all the 
operators generated from it through (24)] fulfil (10) 
for the t = 0 and t = ¼ sections. 

In the high-symmetry description, the structure- 
factor formula (19) for a vector H = ha* + kb* +/c* 
+ mq can be written as 

F(H) = Fo(H) + F,/4(I-I ) exp {i'n'[k + l + (m/2)]}, 

(25) 

where FOOI) and F~/4(H) are the 'structure factors' of 
the 'hemistructures' lying at the sections t = 0 and 
t = ~, respectively. They only differ at the points at 
which the modulation functions u(24) are evaluated: 
~ = qr~ for the former and ~ = qr~ + ¼ for the 
latter. Because all the atoms in the basic structure lie 
in special positions (see Sciau & Grebille, 1989), the 
modulation function (2) can be written as 

U ( X 4 )  = U 0 + U l ( C O S  2 7 r ~  4 -4- sin 2 7 r ~ 4 )  

+ UE(COS 2rrx4 - sin 2~r~4) + u3 cos 47r~4, 

(26) 

with the parameters ui calculated from the results of 
the standard refinement performed by Lapasset et al. 
(1986), given in Table 3. From this table and (26), it 
can be seen that u(~4) and u(~4 + ~) only differ in 
their y component. Following (25), the appearance of 
the second-order satellite reflections (main k + l =  
odd reflections) is related to this difference; when this 
set of reflections is unobserved or very weak (as it is 
in this case), one can make the approximation u(~4) 
= u(Y4 + )) and neglect the parameters U2y ands U3y in 
(26) with a convenient reduction in the number of 
structural parameters (from 20 to 12). 

Let us now analyze the description performed by 
Sciau & Grebille (1989). The use of the refinement 
program R E M O S  with the high-symmetry descrip- 
tion yields for the calculated structure-factors 

F(H) = F0(H){1 + exp [irr(k +/)]}. (27) 

This expression has the following characteristics: 
(i) the non-symmetry-imposed condition u(24)= 

u(24 + ¼) is introduced ab initio, thus removing any 
possibility of accounting for second-order satellite 
reflections; 

Table 1. Symmetry elements of  the SSG --lrsr'emcn 

( E  110 ,0 ,0 ,0 )  - t ~ ~ 1"4) ( I  110,~, i , i  + 
I - - I l l  (rex 11~,0,0,0) (Cz~ ll~,~,~,~',) 

(c,, ~IO,O,O,½) - " ( m y  1 [0 , i , iO '4 )  

11~,0,0,9 (Cz~-~"" " (m~ 1 i I Ii,~,~,'r4) 

Table 2. Space-group symmetry of  the different 
sections of the supercrystal for r4 = 0 and I"4 = ¼ 

1 
t r 4 = 0  7 " 4 = ~  

0 m o d ( ¼ )  Pmmn Pmcn 
1 I 

t = ~ m o d ( z )  Pmcn Pmmn 
O t h e r  v a l u e s  Pm2~n Prn2~n 

Table 3. ui parameters ( x  104) for the modulation 
functions (24) calculated from the independent param- 

eters given by Lapasset et al. (1986) 

D a s h e s  i m p l y  p a r a m e t e r s  f i x e d  t o  z e r o  b y  s y m m e t r y .  

Uo I! I I12 I13 

K x . . . .  

y - - 9 - 8 9  

z 7 - 3 7  - - 

F e  x - 4 - - 

y . . . .  11 

z - 10  - - 

F ( 1 )  x - 3 1 3  - - 

y - - - 17  

z - - 4 6  - - 

F ( 2 )  x . . . .  

y - - - 3 5 8  - 2 2 4  

z 0 - 1 4  - - 

F ( 3 )  x 1 10  - - 

y - - - 5 6  - 4 0  

z 5 - 1 5  - - 

(ii) equivalent h,k,l,m and h , k -  1,l,m + 2 reflec- 
tions have different calculated structure factors. 

The latter is a general consequence of misuse of 
the formalism as it stands and would prevent any 
attempt at an accurate structural analysis in a high- 
symmetry description. However, in the particular 
case we are analyzing, the extinction rule arising 
from (27) gives a natural way of indexing the diffrac- 
tion pattern with no harmful consequences for the 
refinement procedure: the first-order satellite reflec- 
tions can only be referred to main k + l =  even 
reflections and the second-order satellite reflections 
can only be indexed as main k + 1 = odd ones. 

Then, the apparent success of the refinement per- 
formed by Sciau & Grebille (1989) must be looked at 
as the conjunction of two particular conditions: the 
weakness of the second-order satellite reflections and 
an almost inescapable 'unambiguous'  indexing of the 
diffraction pattern. However, for a fair comparison 
between the R factors obtained in both the super- 
space description and the standard 3D one, the same 
number and type of reflections ought to be taken 
into account for the R calculation. Neglect of the 
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subset of second-order satellites in the former might 
invalidate the apparent equivalence of both results. 

Summarizing, we conclude that a less-favorable 
case could hardly be dealt with by the high-symmetry 
SSG description using the formalism as it stands in, 
for example, Yamamoto's REMOS. On the other 
hand, none of the above-stated problems appears 
when the correct structure-factor formula (20)-(21) 
for the high-symmetry SSG description is employed: 
no ambiguity appears in the indexing of the diffrac- 
tion pattern, no reflections must be ignored and no 
non-symmetry-imposed conditions result for the 
modulation functions. Thus, the advantages of 
employing a high-symmetry SSG description will be 
fully exploited in the resolution of commensurate 
modulated structures only after the proposed 
modifications to the structure-factor formula are 
taken into account. 

The author thanks Dr M. Benyacar and Dr R. 
Baggio for carefully reading this manuscript. 
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Abstract 
A new method for computation of X-ray multiple Bragg 
diffraction in perfect crystals is presented. The method 
is based on the extended dynamical diffraction theory 
and implies the reduction of the diffraction equations 
to a generalized eigenvalue problem. The advantage of 
the proposed approach is the possibility of decreasing 
the scattering-matrix size and simplifying the solution 
when some X-ray beams are not grazing. The boundary 
conditions are also simplified by the analysis of Bloch- 
wave structure inside the crystal and the proper selection 
of their polarization states. 

1. Introduction 
In recent years, application of  bright synchrotron 
radiation to a broad range of  X-ray experiments has 
aroused interest in X-ray multiple Bragg diffraction, 
giving us a new opportunity to measure the fine 
structure of multiple Bragg peaks. These measurements 
can form the basis for new methods of  studying 
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crystals and their surfaces (see Golovin, Imamov & 
Kondrashkina, 1985; Kazimirov, Kovalchuk, Kohn, 
Ishikawa & Kikuta, 1991; Kazimirov, Kovalchuk, 
Kohn, Kharitonov, Samoilova, Ishikawa, Kikuta & 
Hirano, 1993; Kohn, 1988; Kohn & Samoilova, 
1992; Kov'ev & Simonov, 1986; Stepanov, Kondrash 
kina & Novikov, 1991; Stepanov, Kondrashkina, 
Novikov & Imamov, 1994). However, they require a 
proper theoretical interpretation. 

The theoretical analysis of X-ray multiple diffraction 
in perfect crystals can be based on the dynamical diffrac- 
tion equations with respect to 2N wavefield amplitudes 
(the factor 2 is due to the vectorial nature of electromag- 
netic waves). As shown by Kohn (1976, 1979), these 
equations can be reduced to a simply soluble routine 
eigenvalue problem for a 2N x 2N scattering matrix. 

The problem becomes considerably more complicated 
if at least one X-ray beam grazes the crystal surface 
and consequently experiences specular reflection. These 
grazing cases are of special interest for crystal-surface 
studies. Also, accounting for specular reflection is often 
important in the rapidly developing optics of soft X-rays. 
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